Program Information

EQIP: Application pre-approvals have started. Pre-approved applicants are being contacted to start the contracting process.

CSP: 2020 Application sign-up deadline has passed. Application interviews are taking place.

NSWCP: New funds come July 1st so get your irrigation applications in by August 31st for first chance approvals.

Energy Efficiency Grant: Sign-up deadline for 2021 funds is October 31, 2020. For more information contact Kelley at Rural Development at the Kearney USDA Service Center at 308-455-9837 or kelley.messenger@usda.gov.

Calendar of Events

June 14: Flag Day
June 21: Father’s Day
July 3: Independence Day Observed – Gov’t Offices Closed
July 4: Independence Day
July 6: CNPPID Board of Directors Meeting
July 14: TBNRD Board Meeting

Tool to Determine Crop Water Use – Part 2

In the last issue, you were introduced to the 2020 NAWMN. This network is a tool for area and participating producers to determine how much water their crops are using. The following is an example of how to use this tool.

Step 1: You need to know the crop stage of the crop in the field you are working with. There are descriptions at the bottom of page 3 in each issue of this newsletter to assist you. Once you know your crop stage, you can determine your crop coefficient (Kc), also found on page 3. In our example, corn is at 12 leaf, so the Kc equals 0.88.

Step 2: Go to one of the two websites found on page 3 of each newsletter (under “NAWMN Sites”). Select an atmometer station nearest your field and determine the amount of evaporation (reference ET) that has taken place. A general map of atmometer locations is shown on page 3. In this example, evaporation will be 1.8 inches for the week.

Step 3: Calculate ET or Crop Water Use. Multiply the reference ET by your crop stage coefficient (Kc): 1.80 inches * 0.88 Kc = 1.584 inches used by your corn for the respective week. To calculate average daily water use, divide by 7 days: 1.584 inches / 7 days = 0.226 inches used per day.

As a side note, when you go to either of these websites, there will be charts showing you weekly crop water use, thus eliminating your need to calculate the weekly use.

As one gets used to this tool, one can tweak it to better work for their irrigation water management program. Knowing the weather forecast, one can project an estimated crop water use over the next few days.

In addition, I am emailing weekly crop water use for the NAWMN sites to those who receive this newsletter via email. If you have any questions, call Curtis Scheele at 308-995-6121, Ext. 3 or email to curtis.scheele@usda.gov.

Curtis’s Column

Staffing Updates in NRCS Offices Across the TBNRD:

- New: Levi Adam, RC – Holdrege
- New: Jessica Johnson, SC – Holdrege
- New: Jack Gibbens, RMS – Elwood
- Retired: Steve Beadle, SCT – Elwood – To be replaced
- Change: Lisa Berkeypile, RC – formerly Elwood – To be replaced
- Change: Lisa Berkeypile, RC – Minden – Replaced Michael Perry

Free ET Data Texting Service

See attached Flyer for more info.

CSP Contract Holders

Reminder on Applied Fertilizer

As we head into fertigations, in order to receive fertilizer related enhancement payments, total fertilizer applied must meet UNL recommendations.

Would You Have Known Moisture Levels to 4 Feet?

Update on last issues dryland corner moisture levels. The 3.30 inches of rain over Memorial weekend continued to work down to 4 feet. This field got another 1.10 inches of rain the first week of June. As of June 8th, the 3rd foot remains nearly full and the 4th foot is up to 83% moisture. See charts below.

This dryland field is a great example of showing moisture and its movement in the soil. Soil moisture sensors show what’s going on in the soil. In knowing this, one can use soil moisture sensor information on irrigated fields to help manage irrigations, ultimately saving money and helping protect our water supply.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2 foot</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>3 foot</td>
<td>63%</td>
<td>97%</td>
<td>95%</td>
</tr>
<tr>
<td>4 foot</td>
<td>53%</td>
<td>68%</td>
<td>83%</td>
</tr>
<tr>
<td>4 ft. avg.</td>
<td>79%</td>
<td>91%</td>
<td>95%</td>
</tr>
</tbody>
</table>
CNPPID NOTES

Precipitation Report and Irrigation Begins:

So far this season, we’ve seen some steady precipitation, particularly on the east end of the Central Nebraska Public Power & Irrigation District system. From April 1 to June 1, rainfall across the District is as follows: Elwood Reservoir had 4.15 inches; Bertrand had 4.65 inches; Holdrege had 4.82 inches; Minden had 8.91 inches.

The District issued out a number of pump-in permits. These annual permits allow customers to pump rainwater off their fields and into Central’s canals to help dry up the customer’s fields. Central made many operational improvements in the non-irrigation season, adding additional overflow structures, gates, etc. to help during these heavy rain events. These improvements yielded positive results during this last heavy rain event.

As a reminder, Central’s scheduled irrigation first run began on June 8th, and we ask that the Irrigation Service Specialists and customers communicate daily on water schedules. This open dialogue allows the ISS to deliver the water on time, and helps Centrals system run efficiently.

Find us at www.cnppid.com or @CNPPID on Facebook, Instagram, Twitter and LinkedIn.

Tri-Basin NRD News

Chemigation Reminder:

Do you plan to apply fertilizer or ag chemicals to your fields through your center pivot or drip irrigation system? If so, you must have a chemigation permit from Tri-Basin NRD for each injection point. Call TBNRD at 1-877-995-6688 for more information about the permitting process.

If you already have chemigation permits, it is a good idea to check your safety equipment over at least once a year to make sure all the equipment is in working order.

In the TBNRD chemigation safety equipment inspections are required every three years. At the inspection, the well and irrigation system need to start and operate at normal pressure for at least one minute. Then the following will be checked:

- water discharges from low pressure drain & stops as system’s pressure increases
- 20 ft of hose attached to low-pressure drain to carry contaminated water away from well
- chemical injection line check valve is free of leaks

During shutdown of the system:

- injection pump shuts off when system shuts off
- air is drawn into pipeline through vacuum relief valve
- irrigation pipeline check valve is watertight
- water discharges from low pressure drain & then stops (if pipeline check valve is not leaking)

Free ET Data Texting Service

See attached Flyer for more info.

NEBRASKA EXTENSION EXTRAS

What is a Langley?

For growers, who switched from our free toll-free Water Hotline to the free daily irrigation email updates from Dusty Way at CNPPID; you may have noticed a new “solar Langley” chart. And, may be asking: “What is a Langley?”

Al Dutcher, Nebraska Extension State Climatologist, says that a Langley is a unit for measuring solar radiation energy. It measures the total light energy from the entire disk of the Sun that is received at a specific point. One Langley has the equivalent energy of 0.086 watts per square meter. Or, one Langley per minute = 697.3 watts per square meter.

To put Langley’s in perspective, values about 500 Langley’s per day are common on most sunny days. Solar radiation will drop below 300 Langley’s on a cloudy day and below 150 Langley’s during overcast conditions and light drizzle. Langley values drop below 100 on moderate rainfall and/or foggy days.

For crop development, as solar radiation to the plant decreases; corn growth and development slows, extending the grain fill period. This condition occurred last year in central Nebraska.

Rootless Corn Syndrome:

High winds have triggered some concerns about corn falling over or flopping in the wind. Generally, corn in current V4 to V6 (6-leaves) growth stages have well established thicker secondary root development (much stronger than early primary roots. However, if the corn plants lack secondary (nodal) root systems; then “rootless” or “floppy” corn syndrome may result.

The most common rootless corn factor is saturated soils preventing adequate root development and/or seed-slot sidewall compaction due to too wet of conditions at planting time. Also, if the plant crowns became exposed, then the secondary roots may have dried and sluffed off before growing into the soil. Crowns can be exposed if heavy rains compacted the seedbed or washed away the soil around the developing crown.

Shallow planting may have been a problem in a few cases. Although shallow planting can expose crowns and cause poor secondary root development, most observed fields with “rootless corn” this year appear to have been planted at the recommended depth.

Bob Nielsen, Purdue University Corn Specialist, says that even if corn plants have fallen over, new secondary roots can continue to form and establish a viable root system if moisture is not limiting. Inter-row lay-by cultivation to move soil around the exposed crowns can help if not too many plants have fallen over.

New 2020Dicamba-Resistant Herbicide Rules:

On June 3rd, U.S. Ninth Circuit Court in California issued an immediate registration cancellation for three dicamba-resistant Roundup Ready 2 Xtend® soybean herbicides including: XtendiMax®, FeXapan®, and Engenia®. The new Tavium®, a pre-mix Roundup Ready 2 Xtend® of dicamba and S-metolachlor, was not part of the court order, since it was not included in the original Environmental Protection Agency (EPA) re-approval conditional registration in 2016.

Then, on June 8th, EPA provided clarity as follows:

Growers and commercial applicators may use existing stocks that were in their possession on June 3, 2020. Such is must be consistent with the product’s previously-approved label, and may not continue after July 31, 2020.

Find the latest EPA provisions on our Nebraska Extension cropwatch.unl.edu website.
Inches of Crop Water Use (ET) = Evaporation \times Kc

<table>
<thead>
<tr>
<th>Site</th>
<th>Evaporation</th>
<th>Rain</th>
<th>Evaporation</th>
<th>Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.80</td>
<td>0.00</td>
<td>2.90</td>
<td>1.54</td>
</tr>
<tr>
<td>2</td>
<td>1.70</td>
<td>0.00</td>
<td>2.70</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>1.60</td>
<td>0.00</td>
<td>2.70</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>0.00</td>
<td>2.70</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>1.30</td>
<td>0.00</td>
<td>2.20</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>1.80</td>
<td>0.27</td>
<td>2.70</td>
<td>0.46</td>
</tr>
<tr>
<td>8</td>
<td>1.50</td>
<td>0.23</td>
<td>2.50</td>
<td>0.07</td>
</tr>
<tr>
<td>9</td>
<td>NA</td>
<td>NA</td>
<td>2.40</td>
<td>0.02</td>
</tr>
<tr>
<td>10</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>1.50</td>
<td>0.00</td>
<td>2.60</td>
<td>0.27</td>
</tr>
<tr>
<td>12</td>
<td>1.70</td>
<td>0.00</td>
<td>2.40</td>
<td>0.10</td>
</tr>
<tr>
<td>13</td>
<td>1.60</td>
<td>0.00</td>
<td>3.00</td>
<td>0.05</td>
</tr>
<tr>
<td>14</td>
<td>1.40</td>
<td>0.00</td>
<td>3.00</td>
<td>0.38</td>
</tr>
<tr>
<td>15</td>
<td>1.30</td>
<td>0.00</td>
<td>3.30</td>
<td>0.18</td>
</tr>
<tr>
<td>16</td>
<td>1.60</td>
<td>0.90</td>
<td>2.80</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Crop Stage Information

Corn (V4-4 Leaf to V10-10 Leaf stage): At V6, the growing point and tassel are above the soil surface. The stalk is beginning a period of increased elongation. Nutrients and water are in greater demand starting at 10 leaf.

Avg. daily water use from June 1 – June 7 was 0.06”-0.24”.

Soybeans (V1-1st Node to V5-5th Node stage): Nitrogen-fixation starts around the V2-V3 stages. The number of nodules formed and the amount of nitrogen fixed increases with time until R5.5 when it drops off sharply.

Avg. daily water use from June 1 – June 7 was 0.06”-0.30”.

Crop ET Information

NAWMN Sites:
- https://nawmn.unl.edu/ETdata/DataMap
- Email: NRCS: 308-995-6121, Ext. 3
- CropWatch: https://cropwatch.unl.edu/gdd-etdata
- CNPPID: https://www.cnppid.com/weatheret-data/
- Texting: TBNRD: 308-995-6688 or UNL: 308-995-4222
- Email: CNPPID: 308-995-3555

<table>
<thead>
<tr>
<th>Corn Stage</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6</td>
<td>6 Leaves</td>
</tr>
<tr>
<td>V9</td>
<td>9 Leaves</td>
</tr>
<tr>
<td>V12</td>
<td>12 Leaves</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soybean Stage</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>2nd Node</td>
</tr>
<tr>
<td>V4</td>
<td>4th Node</td>
</tr>
<tr>
<td>R1</td>
<td>Beginning Bloom</td>
</tr>
</tbody>
</table>
LAKE AND RIVER LEVELS

CNPPID Reservoir Elevation and Platte River Flow data listed below and other locations can be found on CNPPID’s website at http://cnppid.com/wp-content/uploads/2016/06/lakeRiverData.html.

<table>
<thead>
<tr>
<th></th>
<th>June 11, 2020, 8:00 AM</th>
<th>1 Year Ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity of Lake McConaughy</td>
<td>85.9%</td>
<td>NA</td>
</tr>
<tr>
<td>Inflows to Lake McConaughy</td>
<td>1260 cfs</td>
<td>3290 cfs</td>
</tr>
<tr>
<td>Flows on the North Platte at North Platte</td>
<td>NA cfs</td>
<td>282 cfs</td>
</tr>
<tr>
<td>Flows on the South Platte at North Platte</td>
<td>NA cfs</td>
<td>737 cfs</td>
</tr>
<tr>
<td>Flows on the Platte at Overton</td>
<td>NA cfs</td>
<td>3060 cfs</td>
</tr>
</tbody>
</table>

DAD:
A son's first hero and a daughter's first love.
- ?????

WEBSITES OF INTEREST

Climate: agclimatenebraska.weebly.com
NRCS Nebraska: www.ne.nrcs.usda.gov
Central Irrigation District: www.cnppid.com
TBNRD Home Page: www.tribasinnrd.org
Farm Service Agency: www.fsa.usda.gov
UNL Cropwatch: cropwatch.unl.edu
UNL Extension: extensionpubs.unl.edu
K-State SDI Website: www.kstate.edu/sdi
No-till On The Plains: www.notill.org

RAINFALL

Rainfall amounts listed below and other locations come from NeRAIN which can be found at website https://nednr.nebraska.gov/NeRain/Maps/maps.

<table>
<thead>
<tr>
<th>Location</th>
<th>May 28 – June 10</th>
<th>May 1 – June 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elwood 0.26 mi. S:</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>Bertrand 6.1 mi. SE:</td>
<td>0.83</td>
<td>5.36</td>
</tr>
<tr>
<td>Holdrege 0.99 mi. E:</td>
<td>0.43</td>
<td>4.81</td>
</tr>
<tr>
<td>Minden 7.2 mi. W:</td>
<td>0.32</td>
<td>7.50</td>
</tr>
<tr>
<td>Minden 5.8 mi. E:</td>
<td>0.69</td>
<td>8.71</td>
</tr>
</tbody>
</table>

Average Rain for May in Holdrege = 4.06 Inches

*** If you wish to receive this newsletter via e-mail, or have any questions, comments or ideas, feel free to contact Curtis Scheele at the NRCS office in Holdrege or you can email him at curtis.scheele@usda.gov. ***
A texting service for ET Data is replacing the Water Use Hotline.
You can opt-in to receive updates by texting ETDATA to 80123. You can also call the Tri-Basin NRD (308-995-6688) to request to be added to the ET Data texting.

ET Data (Evapotranspiration Data) can be useful in making decisions about your irrigation, fertilizer and chemical application schedule. Texts are sent Monday through Friday during irrigation season. The texts contain:

Daily (D) and Future 3 Days (F3d) estimated water use for both Corn and Soybeans (Beans) at three locations across the district: Holdrege 5N (Hld), Axtell 5NE (Axt) and Smithfield 2E (Smfld).

Text: ETDATA
To: 80123